MEM09003B
Prepare basic engineering drawing

Learner guide
Version 1

Training and Education Support
Industry Skills Unit
Meadowbank

Product code: 5516
Acknowledgement
The TAFE NSW Training and Education Support Industry Skills Unit, Meadowbank would like to acknowledge
the support and assistance of the following people in the production of this learner resource guide:

Standards Australia

Writer:
Warren Blackadder
TAFE NSW

Reviewer:
Jim Miles

Project Manager:
Stephen Davies
Education Programs Manager
TAFE NSW

Enquiries
Enquiries about this and other publications can be made to:

Training and Education Support Industry Skills Unit, Meadowbank
Meadowbank TAFE
Level 3, Building J
See Street,
MEADOWBANK NSW 2114

Tel: 02-9942 3200 Fax: 02-9942 3257

© TAFE NSW (Training and Education Support, Industry Skills Unit, Meadowbank) 2011
Copyright of this material is reserved to TAFE NSW Training and Education Support, Industry Skills Unit Meadowbank. Reproduction or transmittal in whole or in part, other than for the purposes of private study or research, and subject to the provisions of the Copyright Act, is prohibited without the written authority of TAFE NSW Training and Education Support, Industry Skills Unit Meadowbank.

Table of Contents

Introduction ... 5
1. General introduction .. 5
2. Using this learner guide ... 5
3. Prior knowledge and experience 6
4. Unit of competency overview 6
5. Assessment ... 7

TOPIC 1: Australian drawing standards and orthographic projection 9
Determining the front view .. 16
Topic 1: Student exercises ... 17

TOPIC 2: Laying out an engineering drawing .. 25
Drawing layout ... 25
Topic 2: Student exercises ... 28

TOPIC 3: Drawing sheet .. 31
Standard drawing sheet sizes .. 31
Layout of drawing sheets ... 32
Topic 3: Student exercise ... 36

TOPIC 4: Dimensioning .. 37
Historical measurements ... 37
Dimensions ... 37
Features of a dimension .. 37
Dimension drawn "Not to Scale" 38
Placement of dimensions .. 38
Rules governing dimensioning 40
Topic 4: Student exercises ... 42

TOPIC 5: Sections .. 45
Section overview .. 45
Cutting plane line ... 45
Hatching patterns ... 46
Types of sections ... 47

TOPIC 6: Auxiliary views .. 55
Overview ... 55
Drawing an auxiliary view .. 55
Circular features ... 57
Draw an ellipse in an auxiliary view 57
Topic 6: Student exercises ... 60

TOPIC 7: Lettering .. 63
Lettering overview ... 63
Why practise lettering? .. 63
Lettering ... 63
Technique of lettering ... 64
Height and proportion of letters 65
Spacing of letters and words 65
Topic 7: Student exercises ... 66

TOPIC 8: Scales ... 67
Scale overview .. 67
Imperial scales .. 67
Metric scales .. 67
Reading scale rules .. 67
Recommended scales ... 69
Topic 8: Student exercises ... 70

TOPIC 9: Competency Test ... 73
Competency test ... 73
Practice competency test ... 73

Standard abbreviations .. 75

Resource Evaluation Form .. 77
TOPIC 1: Australian drawing standards and orthographic projection

Required skills

- Produce a simple drawing in Orthogonal Projection
- Use different line constructions to identify features on an orthogonal view.

Required knowledge

- Name the Australian Standard controlling the preparation and presentation of all drawings in Australia
- The difference between First and Third Angle Projection
- Identify and/or name 10 items of manual drafting equipment
- Identify and/or name 10 types of line construction and line widths used in preparing a drawing.

Standards - General Information

The preparation of plans for the construction of buildings and machines is as old as written history. Original drawings were carved on rock or sketched onto papyrus. One of the oldest drawings of an engineering component is a cave painting of a bow in Castellon, France in about 8000BC.

As civilisation grew and the skills became more advanced, plans were produced on other mediums such as bark and paper using a variety of instruments to assist in creating better quality drawings.

Figure 1 shows a detail drawing of various halls, rooms and antechambers around the central courtyard of the Palace of Nur Adad in Larsa, Babylon about 1850BC and was drawn in clay.

Figure 2 shows Leonardo De Vinci's drawing of a helicopter (1490-1500).

Figure 3 shows Michelangelo produced the preliminary sketch for San Giovani dei Florentini in 1559 on paper as shown in Figure 3.

Figure 4 shows during the Industrial Age in the 1850s drawings became elaborate and were prepared by qualified architects, engineers and draughtsmen and can be seen in Figure 4, Robinson's New York Utility plan showing the sewer, gas, water services and ventilation.
Figure 5 shows a detail drawing of a Flange drawn by hand in 2001 on tracing paper.

Drawings were created by the designer with little thought to conformity or any standard; some drawings had some dimensions or sizes. However many drawings showed the basic shape or overall sizes and the actual details were left up to the engineer and supervisor on the job.

Standards have existed since the beginning of recorded history. The ancient Egyptians developed the 365 day calendar in 4236BC basing the rising of the “Dog Star” or Sirius every 365 days. In 1120AD, King Henry I of England instituted the “ell” which was the equivalent to the length of his arm.

The earliest standards were the physical standards for weights and measures which provided a single reference point and against which all other weights and measures in the society could be standardised. As trade and commerce developed, written documents developed which set down mutually agreed standards for products and services such as shipbuilding, housing, electrical/electronic goods, clothing and nearly any object that has to be manufactured. Initially, the standards were unique documents and formed part of a single contract between the supplier and the purchaser. Later the concept of common standards evolved where the same standard could be used across a range of transactions; this portability offering a uniform set of criteria, is the basis of modern standardisation.

After the rapid industrialisation of the early 19th century, the general absence of national standardisation caused high inefficiencies. Lack of conformity was a major cost as evidenced with the different railway gauges between the different states; each carriage had to be unloaded from one carriage in New South Wales and loaded onto another carriage in Victoria when transporting goods between the states. It wasn’t until the end of the 19th century that the value of standardisation in sizes, specifications, materials, testing and conformance was recognised as a national priority. By 1900, standardisation was flourishing and has continued to where it is now become intrinsic to modern society and has extended far beyond the initial focus to include consumer safety, occupational health and a myriad of other topics, all of which serve to improve the quality and comfort of everyday life.

Standards are the tools we use to organise our technical world and measures we employ to establish norms for management procedures; they underpin consumer expectations that products purchased will be safe, reliable and fit-for-purpose. Standards have become such integral components of our economic, social and legal systems that they are often taken for granted and their crucial role in modern society is often not recognised.¹

¹ Australian Standards - http://www.standards.org.au

Australian drawing standard - AS 1100

A Standard is a published document which sets out specifications and procedures designed to ensure that a material, product, method or service is fit for its purpose and consistently perform in the way it is intended. Standards establish a common language which defines quality and establishes safe criteria. Standards and conformance are the keys to ensuring the quality and consistency of physical, chemical and biological measurement throughout Australian society and the economy.

The benefit of standards to both the Public and National Interest are:²
- Standards Protect Australians
- Standards Support Australian Innovation
- Standards Boost Australian Production and Productivity
- Standards Make Australian Business More Competitive
- Standards Link Australia to the World
- Standards Complement Australian Regulation and Make Markets Work Better
- Working on Australian Standards Rewards Participants.

The Australian Standards applying to the preparation and presentation of drawings in Australia is AS 1100 and sets the standard for linework, lettering, dimensioning, symbols, borders, sheet sizes etc.

Manual drafting equipment

The equipment used to produce a drawing depends on the method of drafting used; i.e. computer, drawing board, photographic etc. Drawings prepared electronically (computers) require little more than a computer, keyboard, monitor, software and a printer/ploter. Drawings being prepared manually vary depending on the medium and methods used. The equipment usually consists of:

Pencils

High quality pencils should always be used when drawing. Pencils are available in the old style timber pencil or modern mechanical pencils. The older style timber pencils have a thin rod of graphite in the centre and require constant sharpening to maintain a good sharp point for drawing. Mechanical pencils have the graphite inside a tube and as the point wears down or breaks, more lead can be exposed as required. Mechanical pens are also available in a range of standard widths (0.25 mm, 0.35 mm, 0.5 mm, 0.7 mm, 1 mm) which give a constant line width.

Timber pencil

Mechanical pencil

When using timber pencils, the pencil should be revolved between the thumb and forefinger to assist in retaining a sharp point; revolving a mechanical pencil is not as important but can assist with maintaining a constant line width.

² Ibid
Pencils are available in a range of grades (or hardness) ranging from 9H to 7B. The 9H pencil has a very hard lead and leaves a very narrow and light line; if the draftsperson is not careful, the pencil can act as a knife and cut through the medium. At the opposite end of grades the 7B is very soft and leaves a wide and dark line; lines drawn using softer pencils are easily smudged. The middle range of pencils includes the F and HB grades. The pencils normally used by draftspersons are 3H, 2H, H, F, HB and B, with H and 2H being the most commonly used.

When using a compass, it is generally accepted to use a lead about 2 grades softer than used when drawing because less pressure is used when drawing a circle using a compass than when drawing a straight line with a pencil.

Drawing Board

A drawing board is the surface upon which a drawing is prepared. A drawing board can be a simple sheet of plywood with a layer of thick paper or vinyl to allow a good quality line to be drawn, or an elaborate drafting machine with movable arms and rules which can be rotated. Most drawing boards are used on a flat table and may be slightly inclined for an easier working position. Drafting machines can be raised or lowered, positioned vertically or horizontally, and some can rotate to allow the draftsperson to work upside down at the top of the drawing without having to remove and reposition the drawing.

Drawing boards and machines have been largely replaced by the computer.

Technical Pens

Technical pens consist of a cone which is a tube with a needle point; inside the pen's body is a reservoir that supplies ink to the cone. Technical pens are available in a large range of standard widths. For optimum line work quality, the cones are manufactured in a variety of materials (mild steel, tungsten tip, ceramic tip) depending on the drawing material being used.

T-square, Set Squares and Protractor

The T-square has a long horizontal arm called the blade, fastened to a shorter vertical arm called the head. The upper edge of the blade and the inner edge of the head are the working edges. The working edge of the blade must be straight or the drawn lines will curved; the head must not be convex or the head will rock and the drawn lines will not be parallel.

Set squares are available in 45° and 30° x 60° styles; they are made from transparent plastic which allows lines on the drawing below the set-square to be seen.

Protractors are used for measuring and setting out angles other than those obtainable with the set-squares. Protractors are normally made from transparent plastic similar to set-squares.

Compass Set

A compass has one leg which carries a pencil and the other leg carries a sharp point or pin; the legs are connected by a bow-shaped spring instead of a joint. An adaptor can be inserted into the pencil leg and an ink pen used in place of the pencil. Compasses are used to draw arcs or circles.

When using the pencil attachment with the compass, the pencil graphite is placed with the bevelled edge on the outside. The pin on the leg is placed at the point where the circle centre is required, the radius is set and the compass rotated about the pin by rotating the handle between the thumb and forefinger.
Scale rule
The scale rule is similar to a normal rule but is graduated in the metric (or imperial) system to set scales; with practice, using a scale rule is as easy as reading a normal rule. Standard scales used in the scale rule are 1:1, 1:2, 1:5, 1:10, 1:20, 1:50, 1:100, 1:200; 1:500 and larger.

Scale rules can be "flat" or "triangular"; the flat rule has bevelled edges for using ink.

Eraser and erasing shield
Erasers are available in a range of materials, hardness and abrasiveness depending on the type of pencil/ink and the drawing medium. Care must be taken to retain the drawing surface in as good condition as possible – intense erasing will damage the surface and make it unsuitable for drawing or even create a hole.

The erasing shield is made from thin metal sheeting which has a series of different sized holes and slots. The shield is placed over a line to be erased thus protecting most of the other adjoining lines and text.

Stencils
Stencils are made from transparent plastic sheets which have letters, numbers, or shapes cut out so a pencil or pen can quickly and accurately reproduce the shape. Lettering guides are available in a range of sizes and are specifically suited to pen sizes (0.25 pen for 2.5 mm text, 0.35 pen for 3.5 mm text, 0.5 pen for 5 mm high text etc). Other stencils are available for symbols and appliances in most drafting disciplines; circles, ellipses and squares for mechanical/basic drawing, and electrical/electronic architectural and structural to name but a few.

Drawing media
A large variety of drawing media is available for producing drawings including Bond Paper, Cartridge Paper, Tracing Paper, Tracing Linen, and Polyester Films and Coated Sheets. Better quality papers are more resilient and stable than the cheaper varieties. As humidity changes, the paper absorbs the moisture in the air and the sheet changes shape and size resulting in inaccurate drawings.

Bond paper
Bond paper is a highly durable writing paper and having a weight of about 80 g/m² (or gsm). The name comes from it having originally been made for documents such as government bonds. Bond paper is now used for letterheads and other stationery as a paper for electronic printers and plotters but is widely used for graphic work involving pencil, pen and felt-tip markers. Bond paper is made mainly from pulped rag which produces a stronger paper than wood pulp.

Cartridge paper
Cartridge paper is a high quality type of heavy paper used for illustration and drawing and was originally used for making weaponry cartridges. Cartridge paper used in drawing is slightly more coarse than bond paper.

Tracing paper
Tracing paper is translucent and made by immersing good quality paper in sulphuric acid for a few seconds. The acid converts some of the cellulose into amyloid form having a gelatinous and impermeable character; when the paper is dried the resultant product is much stronger than the original paper. Tracing paper is named as such for its ability for an artist to trace an image onto it. When tracing paper is placed onto a picture or drawing, the image is easily viewed through the sheet.

Tracing paper is available in grades from the lightweight 42 g/m² to the heavyweight 280 g/m².

Vellum
Vellum can be manufactured from wood or cotton pulp and is used for high quality paper. Vellum is available in a wide range of colours and sizes and can be embossed or plain and is available from 60 to 110 g/m². Vellum is a good drawing material and is more stable than bond, cartridge and tracing paper.

Drafting linen
Drafting linen is made from undyed muslin (finely woven) fabric, normally cotton; the cloth was then highly starched and calendered (paper is passed between several pairs of rollers to give a shiny surface) to create a smooth surface for precise ink and graphite lines. Linen provided an excellent surface for drawing but is highly unstable in humid conditions.

Polyester films
Polyester drafting film is a highly stable drawing medium. The film has a matte finish on the drawing side which provides a good surface for drawing in ink and pencil, and good erasability when using an eraser with little damage to the surface. Film has excellent tensile strength and tear resistance although can be easily ripped if the edge is first nicked. Although the surface feels smooth, film is very abrasive so harder graphite pencils or special plastic pencils, and tungsten or ceramic pens should be used when drawing.
Types of lines

A standard system of linetype construction is used on drawings and drawn in 2 line widths or thicknesses, thick and thin. Thick lines include visible outlines, cutting planes and break lines; thin lines include hidden, hatch, extension, centre-lines, dimension, break, phantom and existing or adjacent lines. The correct use of linetype allows the tradesperson, architect, engineer or “lay” person to correctly read and interpret the drawing.

Visible outlines

Visible outlines are 0.5 mm wide continuous lines and are used to show all edges that are seen by the eye when looking at the object. Only hard knuckle edges are shown, tangents are curves that form a smooth transition and as such cannot be seen. Visible outlines drawn in pencil use a heavy line.

Hidden outlines

A hidden lines are 0.25 mm wide dashed lines and show surfaces that cannot be seen. The dashes are the same length and are approximately 3 mm long while the gaps are all equal lengths approximately 1 mm long. The distances are estimated only and are never measured. The dashes must start and end on a visible outline. Hidden outlines drawn in pencil use a light line.

Dimension lines

Dimension lines are 0.25 mm wide continuous lines and used to show the extent of a dimension. The dimension text appears above the dimension line, while a leader is another form of dimension line and used to connect dimensions (radius or diameter) and notes to a drawing feature. Dimension lines drawn in pencil use a light line.

Projection/extension lines

Projection or Extension lines are 0.25 mm wide continuous lines and used in conjunction with dimension lines. Projection lines extend from the dimension to the points which the dimension line refers to on the object within the view. Projection/Extension lines drawn in pencil use a light line.

Centre-lines

Centre-lines are 0.25 mm wide and used to locate the centre of holes or circular parts of an object. The line consists of a series of long and short dashes, separated by a gap. The long dashes are approximately 25 mm long while the short dashes and gaps are approximately 3 mm long each. Like hidden outlines, the distances are estimated only and are never measured. The long dashes start and end approximately 15 to 20 mm outside the visible outline. Centre-lines drawn in pencil use a light line.

Centre-lines can also be curved to show the centres of holes around a centre point and are referred to on a drawing as PCD meaning Pitch Circle Diameter.

Care must be taken when drawing centre-lines with the long dash intersecting in the centre of the circle as well as passing through the circumference of the circle. In the case of smaller diameter circles, the single dash is allowed.

Figure 6

Dash ends on visible outline

Figure 7

Lines pass through the gaps of intersection hidden and visible outlines

Large diameter circle

Small diameter circle
Hatching lines

Section lines are used to show that a surface has been cut in a sectional view. Section lines are drawn 0.25 mm wide, parallel, and spaced approximately 3 mm apart with the spacing varying according to the material and area to be hatched. Lines are usually drawn at 45° but can also be 30° or 60° depending on the shape of the object. Hatching lines drawn in pencil use a light line.

Cutting plane

The cutting plane shows where a section has been taken through an object (where is has been theoretically cut in half to view the inside shape clearly). The line is drawn using a 0.5 mm wide continuous line 10 mm long and parallel to the cutting plane, and then another 0.5 mm wide line 10 mm line at right angle to the cutting plane; arrows are placed at the end of this line to identify the direction of viewing the section.

Break lines

Break lines are used to show that a part of the object has been removed or broken away to show the internal area clearly. Break lines are drawn with 0.25 mm continuous lines; the lines may be straight with a "Z" shape in the middle or curved lines.

Phantom lines

A phantom line shows the position of an object that moves or the extents of the original shape. Phantom lines are 0.25 mm wide and drawn using a long dashed line approximately 20 mm long, followed by two short dashes approximately 3 mm long, all separated by 3 mm wide gaps.

Existing or adjacent parts

Existing or adjacent parts are continuous lines 0.25 mm wide and represent any structure or part immediately in the vicinity of the object.

Typical example of types of line

![Example of Line Types](image)

The drawing shown in Figure 8 shows the outline of a Plate with a series of drilled holes. The dimensions are shown as smaller text while the larger text indicates the type of line.

Orthogonal projection

Orthogonal or Orthographic Projection is a means of representing a three-dimensional object in a two-dimensional plane or space called a view. A number of views can be included on a drawing with each view being positioned to each other using one of two projection methods, third angle projection, or first angle projection.

First Angle Projection was the preferred method for drawing for many years, however Third Angle Projection proved to be more logical and became the preferred method of projection. In Australia, the method of projection used according to AS 1100 is Third Angle Projection.

The rules for Orthogonal Projection are:

- The Top and Bottom Views must be positioned vertically above or below the Front View.
- The Side Views must be positioned horizontally in line with the Front View.
- The height of the Side Views must be the same as the Front View.
- The width of the Side Views must be the same as the Top and/or Bottom Views.
- The views should be evenly spaced over the drawing.
Third angle projection

In Third Angle Projection, the object is fully located in front of the viewing plane; any visible feature is drawn using a continuous outline while any hidden feature is drawn using dashed lines.

N.B. The views are drawn from where the object is being viewed. View from the Left, drawn on the Left; view from on top, draw the view on the Top.

![Figure 9](image1)

In Figure 9, the orthogonal planes are represented by the boundary box (magenta lines). The faces of the 3 visible sides have been projected along the dashed lines (blue) and drawn as seen from the viewing direction. In Figure 10, the views are shown with the planes opened flat to leave the Front, Right and Top views.

A drawing produced in Third Angle Projection can be identified with the following symbol as shown in Figure 11 and to the dimensions shown in Figure 12.

![Figure 10](image2)

First angle projection

In First Angle Projection, the object is fully located behind of the viewing plane; any visible feature is drawn using a continuous outline while any hidden feature is drawn using dashed lines. The shape of the view and the details shown are exactly the same as the view drawn in third angle projection – only the position of the view changes. The view, when viewed from the left, is drawn on the right while the view from above is drawn below.

![Figure 13](image3)

In Figure 13, the orthogonal planes are represented by the boundary box (magenta lines). The faces of the 3 visible sides have been projected along the dashed lines (blue) and drawn on the other side of the object and the viewing direction. In Figure 14, the views are shown with the planes opened flat to leave the Front, Right and Top views but are the direct opposite to that shown in Figure 10. The right side view is drawn on the left of the front view while the top view is drawn below the front view.

A drawing produced in First Angle Projection can be identified with the following symbol as shown in Figure 17 and to the dimensions shown in Figure 18.

![Figure 14](image4)

Note: To remember which is which: Third angle - This side and First angle - Far side.

![Figure 11](image5)

![Figure 12](image6)

![Figure 15](image7)

![Figure 16](image8)
Number of views

The number of views required depends on the complexity of the component; some drawings may require only one view with the width of the material shown under the Title while other components may require 5 or 6-views to fully describe the object.

Figure 17 shows a complex Cam that requires only 1-view to fully show all the features and dimensions; the thickness is constant and Side View would only show a rectangle so the thickness can be placed below the Title.

Figure 18 shows a simple hypothetical block with a series of different shape holes; however 5-views are required to fully describe the shape.

- ![Diagram of Cam with dimensions](image1.png)
- ![Diagram of hypothetical block with holes](image2.png)

Determining the front view

The Front View will display the most detail, or, it is the largest view. Most draftspersons use the largest view because it requires less drawing room to layout the views. To use an example, a detail drawing of a 50 mm x 50 mm x 8 mm thick angle bar, 200 long has to be prepared.

If the most detail is the criteria then the 3 views will not fit onto an A4 sheet as can be seen in Figure 19. If the criteria used to select the view is the largest view, then the 3 views will fit onto an A4 sheet as can be seen in Figure 20 which reduces printing expenses; and smaller sheets are easier to handle on job sites.

When selecting the Front View, the following should also be considered:

- Reduce the number of views required to fully describe the information to be specified
- Avoid the need for hidden outlines
- Avoid unnecessary repetition of detail.

N.B. The number of views depends on the complexity of the object being drawn.
Topic 1: Student exercises

Ex 1-01
In the space provided, name the type of line indicated.

Ex 1-02
In the space provided, name the type of line indicated.

Name: ________________________________
Ex 1-03

CAD - Create a new drawing and produce the views in Third Angle Projection. Save the file in your work area as MEM09003-SE-03-T1.

Sketch the views in Third Angle Projection on the grid supplied.

Ex 1-04

CAD - Create a new drawing and produce the views in Third Angle Projection. Save the file in your work area as MEM09003-SE-04-T1.

Sketch the views in Third Angle Projection on the grid supplied.