MEM12007D
Marking off/out structural fabrications and shapes
Acknowledgement

The TAFE NSW Training and Education Support Industry Skills Unit, Meadowbank would like to acknowledge the support and assistance of the following people in the production of this learner resource guide:

All calculation samples are from the TAFE HANDY REFERENCE TO METAL FABRICATION TRADE FORMULAE FOR STUDENTS and TRADESMEN booklet; compiled by Ian Hobba and Colin Wear; October 1983.

Writer:
Ed Harkness
TAFE NSW

Reviewers:
Ed Zussa (South Western Sydney Institute)
John Sharples (Illawarra Institute)

Project Manager:
Stephen Davies
Education Programs Manager
TAFE NSW

Enquiries

Enquiries about this and other publications can be made to:

Training and Education Support Industry Skills Unit, Meadowbank
Meadowbank TAFE
Level 3, Building J,
See Street,
MEADOWBANK NSW 2114

Tel: 02-9942 3200 Fax: 02-9942 3257

© The State of New South Wales, Department of Education and Training, TAFE NSW, Training and Education Support Industry Skills Unit, Meadowbank, 2011

Copyright of this material is reserved to TAFE NSW Training and Education Support Industry Skills Unit, Meadowbank. Reproduction or transmittal in whole or in part, other than for the purposes of private study or research, and subject to the provisions of the Copyright Act, is prohibited without the written authority of, TAFE NSW Training and Education Support Industry Skills Unit, Meadowbank.

ISBN 978 1 74236 234 2
Table of Contents

Introduction .. 5
1. General introduction .. 5
2. Using this learner guide ... 5
3. Prior knowledge and experience ... 6
4. Unit of competency overview ... 6
5. Assessment ... 7
Introduction to unit .. 8

Topic 1: Marking off tools and measurement devices ... 11
Marking-off tools and measurement devices .. 12
Review questions .. 16

Topic 2: Marking off techniques for structural fabrications 17
Marking off techniques .. 18
Material efficiency .. 18
Thermal cutting sequence .. 23
Marking off using templates .. 25
Template construction .. 26
Levelling of structural steelwork ... 29
Levelling equipment ... 29
Plumbing of structural steelwork ... 32
Review questions ... 34

Topic 3: Structural sections .. 39
Structural sections .. 40
Tolerances for rolled steel sections .. 41
Types of hot rolled structural steel sections ... 42
Applications for angle sections ... 43

Job 1: Angle Frame ... 45
Job 2: Channel splice joint ... 49
Job 3: Offset channel connection to existing channel splice joint 51
Job 4: Angle connection to existing fabricated channel assembly 53
Job 5: Rafter beam assembly ... 58
Job 6: Column assembly ... 63
Review questions ... 66
Job 7: Beams to column bolted assembly ... 68
Job 8: Composite structure ... 70

Topic 4: Trade calculations for marking off structural fabrications and shapes 73
Trade calculations ... 74
The four operations ... 74
Metal fabrication calculations and formulae ... 75
Cylinder calculations .. 76
Review questions ... 82

Resource Evaluation Form .. 87
Topic 1: Marking off tools and measurement devices

Objectives

At the end of this topic you will be able to;

List the measurement, squaring and marking tools in common use in metal fabrication industries:

- steel rules
- tape measures
- squares
- dividers
- trammels
- marking tools
- holding devices
- special purpose measuring tools.

outline typical applications for each tool:

- measurement
- squaring
- permanent and non-permanent marking
- witness marking.

State the necessary processes for care and maintenance of measuring, squaring and marking tools:

- safety
- wear correction
- environment.
Marking-off tools and measurement devices

Boilermakers and metal fabricators will use a variety of hand tools and measuring devices when marking structural sections to shape and dimension.

The following table contains a list and brief description of marking off, squaring and measurement tools common to most areas of structural fabrication.

Measurement tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Use by Metal Fabricators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel rule</td>
<td>For accurate measurement over the length of the rule. Metal fabricators would typically use this measurement tool to;</td>
<td>• measure small metal parts to size • mark centre lines and hole locations.</td>
</tr>
<tr>
<td>Folding steel rule (Line of cord rule)</td>
<td>For accurate measurement over the length of the rule, transfer of angles. Metal fabricators would typically use this measurement tool to;</td>
<td>• measure small to medium metal parts to size • construct angles to size and transfer to structural sections.</td>
</tr>
<tr>
<td>Tape measures</td>
<td>For measurement over long distances. Metal fabricators would typically use this measurement tool to;</td>
<td>• measure larger metal plates and sections to size • lay out dimensions when constructing or erecting structural sections • Soft tapes are normally used for measuring distances over 8 meters.</td>
</tr>
</tbody>
</table>

Additional student notes:

__ ... __
Squaring tools

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Description</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block square (Engineers square)</td>
<td>For marking square lines off plate edges and marking around rolled steel sections. Metal fabricators would typically use this squaring tool to;</td>
<td>• square off small structural sections prior to assembly
 • transfer lines around structural sections prior to thermal or mechanical cutting.</td>
</tr>
<tr>
<td>Plate square</td>
<td>For marking square lines off plate edges or existing lines. Metal fabricators would typically use this squaring tool to;</td>
<td>• construct square lines during marking off layouts
 • square off larger structural sections
 • check sections for square during assembly.</td>
</tr>
<tr>
<td>Combination set</td>
<td>For accurate angle construction Metal fabricators would typically use this measurement tool to;</td>
<td>• construct angles on structural sections
 • locate centre lines along pipes and circular hollow sections
 • Mark the backgauge on angles</td>
</tr>
<tr>
<td>Bevel square</td>
<td>For transferring angles. Metal fabricators would typically use this marking tool to;</td>
<td>• transfer angles to structural sections
 • duplicate angles
 • check constructed angles during assembly.</td>
</tr>
</tbody>
</table>

Other squares used in metal fabrication include:

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Description</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try square</td>
<td>Similar uses as the block square. As well as marking right angles, try squares have a 45° edge, used for marking and checking mitre corners.</td>
<td></td>
</tr>
<tr>
<td>Combination square</td>
<td>Squaring component of the combination set. As well as 90° and 45° marking and checking, this square can also be used as a back gauge during marking off and fabrication assembly.</td>
<td></td>
</tr>
</tbody>
</table>
Marking tools

Angle or back gauge
- For accurately locating gauge lines to position items or hole centres.
- Metal fabricators would typically use this marking tool to;
 - mark out a series of similar hole locations on structural sections
 - assist assembly of attachments during fabrication.

Dividers
- For drawing arcs and circles.
- Metal fabricators would typically use this marking tool to;
 - geometrically construct angles
 - step out hole locations on flanges
 - transfer dimensions on structural sections
 - mark out small to medium circles for thermal cutting.

Trammels
- For constructing large arcs and circles.
- Metal fabricators would typically use this marking tool to;
 - mark out large circles and arcs, and dividing lines and angles
 - geometrically construct angles
 - transfer measurements and angles on structural sections.

String line
- For producing soft chalk lines over medium to long distances.
- Metal fabricators would typically use this marking tool to;
 - mark out locations for structural sections
 - plumb structural sections during construction.

Scriber
- For accurately marking thin permanent lines on metal sections.
- Metal fabricators would typically use this marking tool to;
 - mark out hole locations, and mark the positions of attachments to structural sections.

Engineers chalk
- Sharpened to a chisel point to mark thin non-permanent lines.
- Metal fabricators would typically use this marking chalk to;
 - mark visible, heat-resistant lines on structural steel sections for cutting, forming or location of hole centres.
Ball pein hammer

General hand hammer used by metal fabricators and boilermakers when marking off. Metal fabricators would typically use this hand tool together with the centre punch to:

- mark hole centres
- permanently mark witness marks on lines
- mark lines to assist accurate thermal cutting.

Centre punch

Used for permanently marking line locations, hole centres for drilling or punching, and marking a shape for thermal cutting.

Hand-held and hand-operated spring loaded prick punches are also available, and are useful for marking centres when using dividers and trammel centres.

Other hand tools used for marking off

Holding devices such as magnets and spring clamps.

Metal fabricators would typically use this tools to:

- hold tape measures accurately in place when marking dimensions on longer structural sections such as universal beams and columns
- hold brackets and other components in place during fabrication assembly.

Metal fabricators will also use measurement and marking tools specific to the type of work being fabricated. Other tools not listed might include customised measuring devices such as:

- scribings back-gauges
- pipe profile markers
- pipe-to-flange squares.

Jigs and fixtures can also serve as measurement devices for repetitive fabrication work. Such devices can allow repetitive work to be completed by semi-skilled workers, allowing the tradesperson to complete more skilled tasks.

Commercially produced high quality workbenches used in fabrication can be set up using fixtures and devices for accurate measurement of distances and angles.

Measurement tools are calibrated to close tolerances, and good quality measurement tools are often expensive to purchase. To ensure long-lasting reliability and accuracy of measurement and marking off tools, they should be used with care and stored appropriately. For example:

- correctly store measurement equipment and squaring tools to avoid damage from other hand tools
- take care to avoid damage from thermal cutting, welding and environmental factors such as wet weather when using measuring tools
- check marking tools for wear; scribers and centre-punches will occasionally require sharpening to their correct angles; hammer handles need to be secured properly to hammer heads; tape, square and rule blades occasionally require light oiling to avoid surface corrosion appearing
- by looking after your tools, to the manufacturers recommendations, they will provide you with accurate measuring devices for many years to come.